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A continuous-time Markov chain is used to model motion in the neighborhood 
of a critical invariant circle for a Hamiltonian map. States in the infinite chain 
represent successive rational approximants to the frequency of the invariant cir- 
cle. For the case of a noble frequency, the chain is self-similar and the nonlinear 
integral equation for the first passage time distribution is solved exactly. The 
asymptotic distribution is a power law times a function periodic in the 
logarithm of the time. For parameters relevant to the critical noble circle, the 
decay proceeds as t -4~ 
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1. I N T R O D U C T I O N  

A continuous-time Markov chain is defined to be self-similar if the trans- 
ition probability from state i to state j, p~, has the scaling property 

Pi+k, j+k  = ~kpij 

In this paper the general self-similar Markov chain with nearest-neighbor 
interactions (birth and death process) is considered, and the first passage 
time distribution is obtained exactly. 

Our motivation for this study comes from the dynamics of 
Hamiltonians with two degrees of freedom. In such systems one would like 
to understand the statistics of the motion in an irregular component of 
phase space. Previous studies indicate that the dominant long-time effect is 
due to the "stickiness ''(1 3) of the invariant tori which bound the irregular 
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region, e.g., the outermost torus enclosing a regular island. These boundary 
tori are "critical": any perturbation will destroy them. (4) Motion in the 
irregular region in the neighborhood of a critical torus is governed by an 
infinite sequence of slightly broken tori, called cantori, through which 
orbits must weave. (s~ A description of the flux of orbits through cantori 
leads to a Markov chain model for the stochastic dynamics. The case of a 
critical torus with "noble" frequency has been studied using renor- 
matization methods. (4) These show that the properties of the cantori have 
scaling properties which lead to the self-similar scaling of the transition 
probabilities. 

The purpose of developing such a model is to enable one to calculate 
the statistics of trapping near the critical torus. Of particular interest is the 
first passage time distribution, Rio(t), the probability per unit time of the 
first arrival in state zero for a particle in state one at t = 0. This represents 
the probability distribution of the first exit from the region near the boun- 
dary. The asymptotic behavior of Rio depends on those orbits arbitrarily 
close to the boundary, and is thus expected to have a universal form. As 
has been discussed by Karney, (1) the correlation function and the "dif- 
fusion" coefficient can be obtained from R. 

The solution of the self-similar Markov chain proceeds by considering 
the first passage distributions R~o(t) and R2~(t). Standard probability 
theory gives one relation between these two quantities. A second relation is 
obtained from self-similarity. These two relations combine to give a non- 
linear integral equation for R~o(t). The Laplace transform of this equation 
yields a nonlinear algebraic equation involving the transform f(s) at two 
different values of the Laplace variable s. Use of a particular ansatz reduces 
the problem to a finite difference equation in ln(s). 

The finite difference equation is nonstandard because the independent 
variable has a continuous rather than discrete domain. As a result there are 
an infinite number of solutions, which can be related to two basic functions 
by linear composition with functions periodic in ln(s). To understand the 
solution space and to answer questions of existence and uniqueness, 
methods similar to those of the theory of linear differential equations are 
developed and used. Finally, the unique physical solution is obtained by 
imposing boundary conditions. 

The final expression for the Laplace transform is expressed in terms of 
infinite sums of elementary functions. A single constant must be determined 
numerically or by perturbation methods. The asymptotic (t ~ oc) behavior 
of the return distribution R~o(t) is determined by the behavior of the trans- 
form f(s) near the origin (s ~ 0), where f(s) has a branch point. Standard 
techniques allow one to deduce that Rm(t ) has the asymptotic form 
Rlo(t)~h(t)t -~, where h(t) is periodic in log(t). The decay power ~ and the 
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function h( t )  are determined by the parameters describing the Markov 
chain. For  parameters relevant to the Hamiltonian model, e = 4.05. 

The outline of the paper follows. In Section 2 the development of the 
self-similar Markov chain as a model for motion near a regular region is 
discussed. Section 3 contains the analysis of the self-similar Markov chain, 
In Section4, the results of this model are compared with previous 
numerical studies of the statistics. 

2. M A R K O V  M O D E L  OF FLUX T H R O U G H  C A N T O R I  

Two-degree-of-freedom Hamiltonian flow can be reduced to an area- 
preserving map by the surface-of-section method. Invariants of the system 
restrict the motion to tori in phase space or equivalently to topological cir- 
cles on the surface-of-section. On each circle, motion is conjugate to a 
rotation with some frequency, co. For  the integrable system, the entire sur- 
face is filled with such circles. Upon perturbation (represented by the 
amplitude k) some of the circles are destroyed; those with frequencies close 
to low-order rationals disappear first. The value of the perturbation 
parameter leading to destruction of a circle of frequency co, kcr(co), is a frac- 
tal function of the frequencyJ 6) The destruction of an invariant circle is 
analogous to a phase transition, and can be treated using a version of the 
renormalization group. (4'7) At the critical point of the renormalization 
group, kor, the neighborhood of the invariant circle has a self-similar struc- 
ture. 

This structure can be best understood in terms of the continued frac- 
tion expansion for the frequency: 

co = [/0, Ii ,  [2,...] = lo + 1/(/1 + 1/(/2 + ""  (1) 

The renormalization structure is obtained by successive truncations of this 
continued fraction. The mth convergent is a rational frequency, co,,,. 
Typically, this rational frequency determines two periodic orbits, one 
hyperbolic and one elliptic (at kcr), corresponding to a chain of islands in 
the phase space. Stochastic orbits in the neighborhood of the critical circle 
meander through the "levels" corresponding to the various convergents, 
becoming trapped near chains of islands. Three such chains are shown in 
Fig. 1. 

The relationship between the motion at one level and that at the next 
is obtained through the renormalization transformation. We will use only a 
few simple properties of the renormalization; more details are available in 
Ref. 7. The renormalization transformation maps one island at level m onto 
one at level m + 1. The coordinate transformation includes an area rescal- 
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Fig .  1. Phase Space of the standard map in symmetry coordinates (4,5~ at kcr for co = l /g 2, 
Shown is a portion of one island with co = 3 /8 ,  three islands with co = 8 /21 ,  and six islands 
with co = 2 1 / 5 5 ,  corresponding to levels 4, 6, a n d  8. The uppermost curve is the critical noble 
circle and below it are the three cantori with minimum A W between each pair of island chains. 
The states in the Markov chain are the stochastic regions bounded by a pair of cantori and 
excluding the island chains. 

ing to accomplish this map. Since successive convergents bracket co (the 
odd being larger and the even smaller than co), and we treat stochastic 
motion trapped on one side of the critical circle, we consider the even 
iterates of the transformation. Its form depends in detail on the particular 
frequency considered; the simplest case is that of "noble" frequencies. 

A noble irrational is defined as having a continued fraction such that 
lm= 1 for all m > m  o for some m o. Nobles are the most difficult to 
approximate by rationals, and thus are expected to withstand perturbation 
best. This is born out by numerical calculation. One expects that in any 
region of phase space the most noble circles will tend to be the last 
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destroyed (which is not say that the outermost invariant circle of an island 
is typically noble). The "king" of nobles is the golden mean, 

g = [1, 1,...] = (1 + x/-5)/2 (2) 

which we exclusively consider below. However, the region near enough to 
any noble is dominated by its golden tail. This is significant since, as shown 
below, the long-time properties of the system are governed by the orbits 
trapped very close to the critical circle. We will only need two simple 
properties of the rescaling transformation for the golden critical circle: the 
ratio of the area of an island of the mth convergent to that of the (m + 2)th 
is (4,7) 

~2 =~ 18.828692 (3) 

and the period, qm, of the ruth convergent scales as 

qm~-g m (4) 

In Fig. 1 three levels of this scaling are shown. 
To construct a model for stochastic motion in the neighborhood of a 

critical noble circle, it is necessary to understand the mechanism for trans- 
itions from one level to the next. (5) The important barriers are the rem- 
nants of destroyed invariant circles called cantori. (8) A cantorus is an 
invariant Cantor set with a definite rotation frequency. The gaps in the 
cantorus can be though of as being formed by nearby island chains 
attempting to overlap. While an invariant circle is an absolute barrier to 
motion, orbits can leak though the gaps in a cantorus. The rate at which 
they do so is determined by the flux through the cantorus, A W, defined as 
the area which crosses the cantorus in one iteration of the map. By area 
preservation the same amount of area returns on each iteration. It can be 
shown that the flux can be calculated as a difference in action between the 
cantorus and an orbit homoclinic to it, A W =  W h - W e ,  which is the 
reason for the notation. (5) 

There is a cantorus for every destroyed invariant circle with irrational 
frequency. Most of these cantori should be relatively unimportant in the 
determination of the transport of stochastic orbits through phase space. 
Those cantori with locally minimum values of A W will be the limiting 
barriers. To the extent that the function A W(m) has only a few sharp 
minima, it may be possible to neglect all but a few of the cantori. The 
quantity A W is in fact a fractal function of frequency similar in form to kcr; 
it appears to have a local minimum at every noble frequency (a countably 
infinite set). In the neighborhood of a critical noble circle there are noble 
cantori between the convergent island chains. These cantori also scale 

822/39/3-4-5 
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according to the renormalization transformation (see Fig. 1). The cantori 
with the minimum A W between levels will be referred to as "minimizing." 

To develop the model we introduce our primary approximation of 
treating the motion of an orbit trapped at the ruth level as random. 
Numerical computations show that the transitions from level to level occur 
suddenly, and that the time an orbit is trapped at one level is large com- 
pared to the iteration period of the map. A particle at level m = 2j will be 
referred to as in state j. We assume that successive transitions are 
uncorrelated and can therefore be described by transition probabilities, P0, 
from state i to state j. These probabilities are determined by the ratio of the 
flux, A W,~, through the minimizing cantorus connecting states i and j to the 
area accessible to the particle in state i, As: 

pu=AW~/A~ (5) 

Since we assume Po is independent of the detailed history of the motion the 
dynamics can be described by a Markov chain. When the transition 
probabilities are small the Markov chain can be taken to have continuous 
time: 

dUj 
d--7- = ~ Nipa (6) 

i 

where Nj is the mean number of particles in state j. 
The scaling of the transition probabilities with level is easily computed 

from Eqs. (3)-(5). The flux scales as the area coefficient 

w+,j+, = a wj+ = a Wol/  2j (7) 

By contrast the area of state j scales as the period of the orbit (the number 
of islands) times the fundamental area (the area of a single island): 

Aj = Ao(g/~) 2j (8) 

This shows that the transition probabilities scale as 

PJd+ 1 = Pol# (9) 

with the factor e = g-2. The probability of a transition from j to j +  1 dif- 
fers from the probability of the reverse transformation by the factor 

pj,j+ ,/pj+ = # = ( g / r  (lo) 

which is related to the scaling of Aj. 
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Decreasing j corresponds to moving away from the critical circle. Far 
from the critical circle the scaling property no longer holds, but the motion 
is strongly stochastic. The time an orbit is trapped in the self-similar region 
can be obtained from the first passage time distribution Rio(t). Here we 
think of state zero as representing that part of phase space far from the 
critical circle. The first passage time distribution is calculated in Section 3. 

The Markov chain model has several obvious defects for describing 
the dynamics near a noble critical circle. The first is that only a countable 
number of the uncountable infinity of cantori have been included. While 
there is numerical evidence that the cantori with large A W between 
minimizing cantori can be ignored, this has not been verified in detail. A 
more serious defect of the model is that arbitrarily close to any minimizing 
cantorus is another with nearly the same value of the flux (it is known that 
A W is a continuous function on the irrationals(9)). These cantori cannot be 
straightforwardly included in the model, since the Markovian 
approximation is invalidated when the area between the cantori becomes of 
order AW. However, it is possible that the structure consisting of the 
minimizing cantorus and its neighbors can be treated as one barrier with 
some effective flux. In this case the scaling properties for this flux will still 
be given by Eq. (7) and the model will still hold. 

Another defect is that, as well as the "main branch" of cantori 
included above, there is also an infinite sequence of cantori surrounding 
each island. These cantori, which are formed from destroyed invariant cur- 
ves inside the island "separatrix," could easily be formally included in the 
model. In this case the topology of the Markov chain is that of a "tree." 
The branching probabilities for this tree are given in terms of the A W of 
the island cantori. 

Finally we note that it is unlikely that the rotation number of the 
typical boundary circle is noble. (~~ Unlike the "last" invariant circle in a 
region of phase space, which is isolated, the typical boundary circle, such 
as the outermost circle about an island, is expected to have KAM surfaces 
on one side. This implies that its frequency is not noble; therefore, the strict 
self-similarity of Eq. (9) does not apply. However, it is likely that a 
statistical self-similarity applies, with e being given probabilistically. 

While the self-similar Markov chain model is motivated by the 
description of transport near a critical noble circle, our treatment, 
presented in the next section, is valid for a general nearest-neighbor, self- 
similar Markov chain. 
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3. FIRST PASSAGE DISTRIBUTION FOR THE SELF-SIMILAR, 
NEAREST-NEIGHBOR MARKOV CHAIN 

3.1. Model and Definition of First Passage Time Distributions 

The transition probability matrix of a general Markov chain with only 
nearest-neighbor interactions has the form 

P,j= aiO i -  1,j -[- bi~ij-}- eel)i+ 1,j (11) 

The self-similarity property (9) implies a~= ae ~, be= b~ i, and ce= cs( Time 
can be scaled to set bl = -1 .  The ratio c/a =--#~ is defined in according with 
Eq. (10). Imposition of particle conservation, 

~ p / j=0  
J 

completes the spcification of the coefficients, a = l/e(1 + pc), b = - l / e ,  and 
c = p(1 +/ze). The resulting equation for the probability evolution, 

dNj = aJ- t [ # N]_ N ~ ] 
dt ~ , -  ]+l--~peNj+, (12) 

has the scaling properties discussed in Section 2. As can be seen in this 
equation, self-similarity implies that time is effectively rescaled by e when j 
is increased by unity. 

The solution proceeds by considering first passage time distributions. 
The first passage time distribution Ro.(t ) is the probability that a particle in 
state i at time zero first reaches state j at time t. The direct first passage 
time distribution, R~(t), is the probability that a particle in state i at time 
zero first reaches state j at time t without having been in another state 
between times zero and t. The distribution Rd(t) vanishes whenever Pij = O, 
since then state j is not directly accessible from state i, and in general is 
given by 

R~(t) =- Pij exp(peit) (13) 

Our goal is to calculate Rio(t). The physical interpretation arises from 
thinking of the states n -- 1,..., ~ as being deep in the cantori sequence, so 
that a particle enters the chain by first being in state one. The particle 
leaves the chain when it arrives at state zero. Thus, R~o gives the statistics 
of leaving the chain given that the particle entered the chain at t = 0. 

For the general self-similar Markov chain, # and e are positive, but 
otherwise arbitrary. In our analysis we assume that e is less than unity, in 
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correspondence with the cantori model. The analysis can be readily 
modified for e ~> 1. 

3.2. Integral Equation for Rlo(t ) 

The passage distribution Rlo(t ) obeys 

Rio(t) = Rdo(t) + dtl Rf2(/1) R2o(/-/1) (14) 

This equation is obtained by noting that particles arriving in state zero 
from state one are of two classes. The first class, represented by R~0, con- 
sists of those that make a transition directly from state one to state zero. 
The second class consists of those that make a transition directly from state 
one to state two before arriving at zero. Their contribution to Rto(t) comes 
from the integral over tl (the time at which the first transition out of state 
one is made). 

In Eq. (t4), both R~o and R~2 are known from Eq. (t3), while R2o is as 
yet unknown, For a nearest-neighbor chain, one can write 

;o Reo(t)= dti R21(tl) R lo( t - t~)  (15) 

since in order for a particle to get from state two to state zero, it must have 
first entered state one at some time tl. Substituting Eq. (15) into Eq. (14), 
one obtains 

C t d ~ '  t 

Rio(t) = R~o(t) + Jo | dtl Rlz(tl) Jt|l dt2 R21(t2 - tl) R l o ( t -  t2) (16) 

For a self-similar chain, because of the time rescaling, Eqs. (11 ) and 
(13) imply 

R~+ ~,i( t) = eR~i_ l(et) (t7) 

This rescaling property is valid for the full first passage time distribution as 
well: 

R,+ 1,,(t) = ~8,,i_ l(et) (18) 

Together, Eqs. (16) and (18) yield 

Rlo(t)=R~o(t)+e dtlR~2(tl) d t2Rlo (e t2 -e t l )R lo ( t - t2 )  (19) 
1 

the nonlinear equation to be solved. 
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3.3. Reduct ion  to a Linear D i f f e r e n c e  Equat ion 

Equations (13) and (19) imply 

fo f t f ( t ) = e - ' + v a  dtle -tl d t 2 f ( e t 2 - e t l ) f ( t - t 2 )  (20) 
1 

in which v ~ # e ( l + # e ) - 2 ;  and the new dependent variable is f ( t ) =  
(1 + #5) Rlo(t ). From Eq. (20) one can deduce that the Laplace transform, 

f (s)  =- f o  e-~t f ( t )  dt (21) 

must satisfy an algebraic equation, 

f ( s ) =  [1 +s-v f ( s /a ) ]  1 (22) 

that relates the values o f f  at different values of the dependent variable. 
Equation (22) can be used to determine the large-s asymptotic form of 

f(s). There are actually two possibilities. From Eq. (21) one can see that 
the physical solution asymptotes to zero. Therefore, Eq. (22) implies 

f (s)  ~ (1 + s) -1 (23) 

One can also see from Eq. (22) the second possible asymptotic behavior, 

f (s)  ~ (as + 1)/v (24) 

One can convert the nonlinear equation (22) to a linear difference 
equation by use of the ansatz, 

f (s)  = Q(s/e)/Q(s) (25) 

For the physical solution, which from Eq. (21) must be everywhere 
positive, this ansatz is valid, as can be seen by constructing Q(s) as follows. 
On any interval So<~S<So/a, Q(s) is chosen to be some nonzero (but 
otherwise arbitrary) function. For s>~so/a, Q is defined recursively by 
Q(s)= Q(sa)f(sa), while for s<so, Q is defined recursively by Q(s)= 
Q(s/a)/f(s). It is not hard to show that Q(s) can be chosen to have an 
arbitrary number of derivatives. With this ansatz one obtains the linear 
equation, 

Q(s) = (1 + s) Q(s/e) - vQ(s/~ 2) (26) 

involving the value of Q at three different argument values. In terms of the 
variable ln(s), Eq. (26) is a linear difference equation. In fact, any nonlinear 
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equation of the form, A(s) f(s) f(s/e) + B(s) f(s) + C(s) = 0, is transformed 
into the linear equation, A(s) Q(s/e 2) + B(s) Q(s/e) + C(s) Q(s) = 0, by the 
ansatz (25). 

3.4. Solut ion Space of the Linear Di f ference Equation 

3.4.1.  General Theory. It is easy to show that if Q(s) is a 
solution to Eq. (26), then Q(s) q(s) is also a solution to Eq. (26), provided 
q(s) is log periodic, q(s/e)= q(s). One can also see that any two solutions 
that are equal on an interval So ~< s < s{/e 2 must be equal everywhere. To 
precisely determine the extent of the solution space one must analyze this 
equation along the lines of the theory of linear differential equations. 

Consider the generalized Wronskian, 

W(QI, Q2, s) -~ Ql(S) Q2(s/e) - Ql(s/e) Q2(s) (27) 

of any two functions Q1 and Q2- If Q1 and Q2 are solutions to Eq. (26), 
then 

W(Q,, Q2, s/e)= W(Q 1 , Q2, s)/v (28) 

Thus, W is nonzero everywhere provided it is nonzero on any interval So ~< 
S ~ sole. 

With this knowledge we can prove that given any two solutions Ql(s) 
and Q2(s) of Eq. (26) with nonvanishing Wronskian, any third solution 
Q(s) can be put in the form 

Q(s)=q~(s) Ql(S)+q2(s) Qz(s) (29) 

where ql and q2 are log periodic. To see this, one defines ql and q2 on an 
interval So ~< s < sole by the equations 

Q(s) = ql(s) Ql(s) + qz(S) Q2(s) 

and 

Q(s/e) = q,(s) Ql(s/e) + q2(s) Q2(s/e) 

The solutions for q l and q2 are well defined since W # 0. Outside the inter- 
val So ~< s < So/~ the functions ql and q2 are defined by log periodicity. With 
this construction Eq. (29) is valid since both sides of the equation are 
solutions to Eq. (26) and the two solutions agree over an interval so ~< s < 
SO/~ 2. 
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3.4.2. S m a l l - s  S o l u t i o n s ,  To explicitly construct two solutions of 
Eq. (26) one can use Frobenius series, 

Q(s)=s ~ ~ a,s" (30) 
n = O  

Insertion of the form (30) into Eq. (26) and matching coefficients yields the 
equation, 

~2~ _ e~ + v = 0 (31) 

for the exponent. The two solutions, 

7 + - ln[ 1 -t- 1(1 - 4v)l/2]/ln(e) (32) 

are real (since v ~< 1/4) and satisfy 0 < 7 +  ~<7 �9 Particular solutions Q+ 
and Q_ are obtained by choosing a0 = 1 and the higher coefficients by the 
recursion relation 

(33) 

As can be seen from Eq. (33), the radius of convergence is infinite since 
lim n ~ ~ an~an _ 1 = O, 

A special case occurs if the two exponents differ by an integer, 
7 = 7 + + l. Then the solution Q + (s) is not valid because the denominator  
in the recursion relation (33) vanishes for n = I. To find the second solution 
one must use theory similar to that of an ordinary linear differential 
equation with a regular singular point whose indicial roots differ by an 
integer. We do not discuss this special case further here. 

In the limit s ~ 0, the Wronskian of these two solutions is 

W(Q +, Q _ ,  s ) =  (1 -4v)i/2(s/~) "~++~- E1 + O(s)] 

Since w ~  0 for an interval So <~ s < sole when So is small, W nowhere 
vanishes. Therefore, any solution, and in particular the physical solution, 
can be written 

Q(s)=q+(s) Q+(s)+q_(s) Q (s) 

3.4.3.  Large-s Solutions. The large-s behavior of Q(s) can be 
analyzed with an expansion, 

Q(s)=s klns+h ~ b,s -n (34) 
n = 0  
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around s = ~ .  Substitution of this form into Eq. (26) and matching coef- 
ficients yields two solutions. 

The first solutions, Qg(s), grows as s ~ ~ .  It has k =  kg=~- 1/2 In e, 
which is positive, and h = hg-  - 3 / 2  + in v/ln e. The recursion relation for 
the coefficients, 

vb,_ 2/e )/( 1) for n bg=(bg_je  - g "+ '  e n -  ) 2  (35) 

implies a large n behavior of b~.-~ e tn ,~12/4. Thus, this series has a radius 
of convergence of zero and, so, is only asymptotic. To specify a unique 
series, the choice b g = 1 is made. 

The second solution, Qd(S), decays as s ~ ~ .  It has k=ka  = 1/2 In ~, 
which is negative, and h = hd -~ 1/2. The recursion relation, 

~-(b~ . - 3  ~ - ~  b n - _ J~ - v~ b n_ 2)/(e - 1) (36) 

for the coefficients implies a large-n behavior of ba~e ~/2. Therefore, this 
series has an infinite radius of convergence. Again the choice bo d = 1 is made 
to specify a unique series. 

Two points about these solutions should be made. The first is that the 
Wronskian is nonzero, 

W(Qg, Q~, s )~  --gslnv/In~/Y 

for large s. Therefore, Q~ and Qa can be used in representations of the form 
(29). Second, even though the series representation of Qg(S) is valid only 
for large s, it may be extended to all s by iteration of Eq. (26). 

3.5. Imposit ion of the Physical Boundary Condit ions 

From the previous section one knows that the physical solution can be 
written, 

Qp(S) -- gp(s) Qg(s) + dp(s) Qa(s) 

in terms of the functions Qg and Qd and some yet to be determined log 
periodic functions gp and d e. According to Eq. (25), f (s)  is given by 

f (s) - gp(S) Qg(s/e) + de(s ) Qd(S/e ) 
gp(S) Qg(s) + dp(s) Qa(s) 

If gp(s)r then the terms containing Qg in both the numerator and 
denominator dominate for large s. This gives 

f (s)  ~' Qg(s/e)/Qg(s) ~ es/v 
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the unphysical behavior found previously [Eq. (24)]. Therefore, we con- 
clude that 

gp(s) = o  

This way, the asymptotic behavior is 

f ( s )  = Qa(s/e)/Qa(s)~ 1/s (37) 

the correct physical behavior. The function dp(s) cannot be determined. 
However, this is unimportant since dp(s) does not affect the physical 
solution. 

3.6. Representation in Terms of  Q+ and Q_ 

To determine the long-time behavior of Q~o(t), we need to know the 
behavior of Qp(s) near the origin. Thus, we would like to know the 
functions q+(s) and q_(s)  of the representation, 

Op(s) = q + (s) Q + (s) + q_ (s) Q_  (s) (38) 

we know that Q+ and Q can be represented in terms of From Section 3.4, 
Qg and Qd, 

Q +_ (s) = g + (s) Qg(S) -t- d+_ (S) Qa(s) (39) 

Together, Eqs. (37)-(39) imply 

q _ ( s ) / q + ( s ) = - g + ( s ) / g  (s) (40) 

Thus, the solution for the Laplace transform is 

f ( s )  = Q + ( s / ~ ) -  g + (s) Q_(s /e ) /g_(s )  
Q + (s) ~ g - ~  Q_ (s)/g_ (s) 

(41) 

The functions g+(s) and g_(s )  are determined from the asymptotic 
forms of Q + (s) and Q _ (s). The tail of the series (30) dominates for s large, 
so the asymptotic forms can be obtained by solving the large-n form of the 
recursion relation (33): 

This is solved by a + _~ C +, where 

C + = C+ e "(" + 1)/2 + n(~ +_ + 1)/v. (42) 
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in which the constants C'+ are determined by requiring 

lim C,+ /a,~ = 1 

This gives 
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c _ + =  1 . . . .  t- - '  

Insertion of Eqs. (42) and (43) into Eq. (30) and extension of the sum 
to include the infinitesimal terms with - o e  < n < 0 yields the asymptotic 
forms for Q+ and Q , 

Q• ~ C • gl(e/+-s) S-(ln"121n~) (3/2)+in,,/In~ (44) 

where C+=-C ' exp[-�89 and the function gl(S) in 
_ : t _  

Eq. (44) is given by 

0(s)= s exp{�89189 (45) 
n =  - - o o  

and is manifestly log periodic. Together, Eqs. (34) and (44) imply 

g • (s) = C+ 0(e ~• s) (46) 

Equations (30), (33), (41), and (46) fully specify the solut ionf(s) in  terms 
of sums over elementary functions. 

3.7. Large - t  Behav ior  of  Rio(t) 

The functions R~o(t) is obtained from f ( t )  by the elementary scale 
transformation of Section 3.3. In turn, f ( t )  is obtained by Bromwich inver- 
sion off(s) .  The large-t behavior o f f ( t )  is determined by the behavior of 
f ( s )  near the singularity with the largest value of Re(s). From Eq. (37) one 
can see that f ( s )  has singularities only at the zeros of Qa(s) and the 
singularities of Qd(s) and Qd(s/e). The singularities of Qa occur only at 
s = 0 and s = o% as one can see from the representation of Eqs. (34) and 
(36). Furthermore, because f ( t )  decays, there exist no zeros of Qa(s) with 
Re(s)~>0. Therefore, the only singularity o f f ( s )  affecting the Bromwich 
inversion is the branch point at s = 0. 

Near the origin f has the form 

f ( s )  "~ r(s) + h(s)s ('~- - '* ~ (47) 
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where 
3~ - 7 - - ~ + + i27zn/ln 

To find f ( t ) ,  one deforms the Bromwich contour to integrate along the 
branch cut in the usual way. The result is 

1 
f ( t ) ~ - - t  1 - ~ ~  h~s in(vz3 , )F( l  + 3 n ) e x p ( - i Z ~ n l n t / l n e )  (49) 

rt 

Thus, for large t, f ( t )  is a function log periodic in t modulated by a power 
law decay, where the exponent 

I ln(g~) (50) 
3 0 = 7  - 7 + =  lne 

The total fraction of particles escaping from state one to state zero is 
N~ = ~ Rio(t)  dt =f (0 ) / (1  + #c). Using Eqs. (25) and (30) we obtain 

1, #e~< 1 
N~ = (pc)-1, pc >~ 1 

The change in behavior when #c = 1 is clarified by considering the ratio of 
left to right moving particles out of state i, 

Pi, i-1/Pi.i+t = (#~)-1 

When #e < 1, particles move to the left more easily than to the right, and 
all e~entually enter state zero, while when pc > 1, many particles starting in 
state one never enter state zero. 
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where r(s) is analytic, and 

h(s)  = ( c + / c _  - O(c s) 

is log periodic and, so, may be written as a Fourier series, 

h(s) = ~ h, exp(i2rcn In s/ln e) (48) 
n - -  c~o 

Calculation of the inverse Laplace transform is facilitated by noting 
that Eqs. (47) and (48) imply that f ( s )  has the form of an infinite series of 
fractional powers of s, 

?(s)--- + Z 
n 
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The moments o f f ( t )  also depend on the behavior o f f ( s )  near the 
origin, 

( t n )  ~ tnf(t) dt ( -d /ds )" f l s=o  

- I~  f ( t )  dt f (O)  

Since f ( t )  decays as the (1 +rio) power of t, only moments with n<f lo  
exist. The moments are readily calculted. For example, 

( t )  = - e  1 +7+(1 - e ) / ( v -  ~1 + 1,+ 4- e 2+ 2,+) 

4. D I S C U S S I O N  

We have shown that the first passage time distribution, Rio(t), in the 
self-similar Markov chain decays as t -j-~~ Other distributions (Rmn , 

re>n)  can easily be computed using the convolution condition (15) and 
the rescaling condition (17). Asymptotically these distributions decay with 
the same power as R10. 

The power law decay arises from the infinity of "direct" decay rates 
with an accumulation point at zero, corresponding to ever more deeply 
trapped particles. In fact, heuristically one might expect the form 

Rlo( t ) ~- ~ A j exp( - #t)  
J 

where the e j represent the direct decay rates. It is easy to see that this form 
gives a power law decay with an exponent ln(A)/ln(e), times a log periodic 
function. Comparision with Eq. (50) gives A _~ e(/~e). Here the factor of e 
arises from coupling to states with larger j, and that of/~e from coupling to 
smaller j. This form can in fact be obtained by a perturbation solution of 
Eq. (12) for e small. The log periodic oscillatory modulation arises from the 
change in rate from e j to e J+ 1: t he j th  contribution dominates the ( j +  1)th 
for a time period proportional to the inverse of its decay rate. 

Other statistical quantities of interest can be obtained directly from the 
escape rates. (~) For example, the survival probability Pl(t),  

ft ~ P~(t) = dt' R~o(t') 

decays with an exponent one less than R. P~(t) is related to the recurrence 
time distribution of Ref. 2. Similarly the correlation function can be 
obtained through integrals of P. 
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Our analysis has been restricted to the continuous-time Markov chain. 
For the discrete case, the rescaling property (18) no longer holds, because 
in addition to the factor e, there is an unavoidable time scale in the 
problem, namely, the discretization time. However, for large j the decay 
time constants will be long compared to the discretization time. Thus, for 
long-time properties, which are dominated by the large j states, the con- 
tinuous-time model is appropriate. 

To compare our results with the motion near a critical noble torus, the 
values of ~ and # from Eqs. (9) and (10) are used in (50): 

e = g-2~0.381966 

# = (g /~ )2  20.139045 

ln(/~e) ~ 3.0500 (51) 
/~0 = In 

which gives a decay exponent of 4.05 for R10. This could be compared to 
results obtained by Karney (1) for decay in the quadratic area-preserving 
map. Unfortunately, for the particular parameter value used in Ref. 1 the 
rotation number of the outermost critical cricle is coo = [0, 5, 1, 13,...], and 
not the golden mean. It is difficult in a numerical experiment to obtain a 
sufficient orbit length to get beyond the first few levels in the continued 
fraction; in Fig. 6 of Ref. 1 there appear to be five distinct decay rates, 
perhaps corresponding to the first five levels of COo. Thus, since the l m for 
small m are not unity, we cannot expect quantitative agreement between 
the theory and the experiment. 

Of course the succession of decay rates observed in Ref. 1 does 
qualitatively agree with our analysis, corresponding to the log-periodic 
modulation in the noble case. An alternative explanation of the various 
decay rates is the branching to side chains corresponding to other critical 
curves in the system. Further numerical experiments will be necessary to 
distinguish between these possibilities. 

Chirikov and Shepelyansky (~/ have given an alternative decay 
exponent for the first passage time distribution near the border of 
stochasticity of the "whisker map." They also use the notion of flux 
through cantori in their discussion, but assume that the scaling of A W is 
different than Eq. (7), 

ZJ Wj, j+ 1 = ~ W01 g2j/log~ (52) 

where 62 1.62795 is the critical exponent for parameter scaling/4) Their 
argument in favor of this assumption is that the effective parameter k - kcr 
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of a cantorus should scale with the distance from the critical circle, but this 
is hard to justify. Using Eq. (52) in (9) gives e=g2m~ and hence 
/~0~1.4971. This exponent apparently agrees will with numerical 
experiments, but we believe that this comparison is hampered by the short 
time of the computations. 

NOTE ADDED IN PROOF 

The solution for the particle number, Nj(s), of the general birth and 
death process can be given in terms of a continued fraction expansion (12) 
analogous to Eq. (25). Our solution represents the limit of this expansion 
for the self-similar case. 
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